BREAKING NEWS

Lanterna do celular e 43°C: como é dar à luz sob Talebã

Rabia está carregando seu bebê recém-nascido, poucos dias após o parto em um pequeno hospital na província de Nangarhar, no leste do Afeganistão. "Este é meu terceiro filho, mas a experiência foi totalmente diferente. Foi horrível", diz ela. Em questão de semanas, a...

O Brasil pode ser um dos países mais afetados por crise na empresa chinesa Evergrande

A incorporadora imobiliária Evergrande, gigante do setor de construção na China, causou pânico em bolsas de valores no mundo inteiro na segunda (20/9) em meio a notícias de que a empresa corria risco de dar calote em parte de sua dívida bilionária, que passa de US$...

A ex-doméstica brasileira que acaba de assumir cargo sênior no governo dos EUA

Uma ex-doméstica brasileira que se tornou líder trabalhista e acadêmica com PhD nos Estados Unidos acaba de assumir um cargo no governo americano de Joe Biden. Natalicia Tracy, que se mudou para os Estados Unidos em 1989, para trabalhar na residência de uma família...

Quantos quilos pode variar em um dia normalmente?

A grande maioria das pessoas já acordou sentindo a sensação que está mais leve ou até chegou a conferir na balança que estava com um número menor do que estava antes de dormir. Essa variação é extremamente normal e que não significa que você emagreceu da noite pro dia...

O avanço da lava do vulcão nas Ilhas Canárias

A lava que jorra de um vulcão na ilha espanhola de La Palma danificou mais de 300 construções, entre elas centenas de moradias, à medida que a rocha derretida se dirige ao mar. Cerca de 6.000 pessoas foram obrigadas a deixar a região das Ilhas Canárias às pressas para...

Por que é possível pegar covid mesmo vacinado, como o ministro Queiroga

O diagnóstico positivo para covid do ministro da Saúde, Marcelo Queiroga, durante viagem do presidente Jair Bolsonaro (sem partido) e comitiva aos Estados Unidos para a Assembleia Geral da ONU vem dominando o noticiário e reacendeu o debate sobre a eficácia das...

Estados Unidos na frente do Ranking de novos Turistas

RANKING TRVL LAB DE INTENÇÃO DE VIAGENS DESTINOS INTERNACIONAIS ESCOLHIDOS 1 – Estados Unidos: 10,65% 2 – Portugal: 9% 3 – Itália: 6,43% 4 – Europa: 5,54% 5 – Canadá: 3,99% 6 – Orlando (EUA): 3,55% 7 – Argentina: 3,55% 8 – Chile: 3,1% 9 – Walt Disney World (EUA):...

Understanding the privilege of having a “rich” passport

  You might not even understand the privilege of having a “rich” passport. The COVID pandemic has brought stark travel inequalities to light. When the world came to an abrupt halt, most travel plans were flushed down the drain, and much hope was lost while we...

2022 Toyota Tundra TRD Pro vs. the Off-Road Pickup Competition

BY MIKE SUTTON SEP 20, 2021 CHEVROLET, FORD, RAM, TOYOTACAR AND DRIVER The redesigned 2022 Toyota Tundra is here, with the upgraded TRD Pro model serving as the top off-road-oriented version. When it goes on sale the Tundra TRD Pro will compete with other fortified...

2021 Alfa Romeo Giulia Quadrifoglio – Starting at $76,845

Overview Although it shares its underpinnings, styling, and cabin with the regular Giulia sedan, the 2021 Alfa Romeo Giulia Quadrifoglio is a different beast thanks to one critical element: its twin-turbocharged 2.9-liter V-6 engine. This gem of a powerplant cranks...

Como a fruta mais fedida do mundo gerar energia para seu telefone

Elas são o coração da tecnologia portátil moderna. As baterias de íon de lítio transformaram nossa capacidade de armazenar e transportar energia e, por sua vez, revolucionaram os dispositivos que usamos.

Comercializadas pela Sony em 1991, quando a empresa buscava uma solução para a duração limitada da bateria de suas câmeras de vídeo portáteis, elas fornecem energia a muitos dos gadgets que usamos hoje – de smartphones e laptops a escovas de dente elétricas e aspiradores de pó de mão. No fim do ano passado, os três cientistas por trás de sua invenção ganharam o Prêmio Nobel de Química por possibilitar essa revolução técnica.

E nossa necessidade por elas só tende a crescer. Os veículos elétricos dependem de baterias de íon-lítio como um substituto para os combustíveis fósseis que usamos atualmente para abastecer nossos carros. Como as fontes de energia renováveis constituem a maior parte do suprimento de eletricidade em todo o mundo, é provável que sejam necessários enormes bancos de baterias para armazenar o excesso de energia quando o vento não sopra ou o Sol não está brilhando.

Em todo o mundo, mais de 7 bilhões de baterias de íon-lítio são vendidas a cada ano e espera-se que esse número cresça para mais de 15 bilhões até 2027.

Mas, como sabemos por nossos telefones, que armazenam cada vez menos energia à medida que envelhecem, as baterias de íon de lítio apresentam limitações. Com o tempo, sua capacidade de reter uma carga diminui, o que significa que elas armazenam menos energia.

Em climas extremamente quentes ou frios, seu desempenho também cai. E também existem preocupações em torno de sua segurança e sustentabilidade – elas podem pegar fogo e explodir sob certas condições, enquanto a mineração dos metais necessários para fabricá-las tem um alto custo social e ambiental.

Isso vem estimulando cientistas de todo o mundo a tentar desenvolver novos tipos de bateria que possam superar esses obstáculos. Ao aproveitar uma variedade de materiais, de diamantes a frutas super fedidas, eles esperam encontrar novas maneiras de impulsionar as tecnologias do futuro.

As baterias de íon-lítio funcionam permitindo que partículas (íons) de lítio carregadas movam eletricidade de uma extremidade à outra, passando por um eletrólito líquido no meio. Uma das coisas que torna as baterias de íon de lítio tão atraentes é sua “densidade de energia” – a energia máxima que uma bateria pode armazenar proporcionalmente a seu volume – que é uma das mais altas de qualquer bateria disponível comercialmente no mercado. Elas também podem fornecer tensões mais altas do que outras tecnologias de bateria.

As baterias são essencialmente feitas de três componentes principais – um eletrodo negativo (ânodo), um eletrodo positivo (cátodo) e um eletrólito entre eles. As funções dos eletrodos alternam entre cátodo e ânodo, dependendo se a bateria está carregando ou descarregando.

Em baterias de íon de lítio, o cátodo é normalmente feito de um óxido de metal e outro metal. Ao carregar, os íons de lítio e elétrons se movem do cátodo para o ânodo, onde são “armazenados” como potencial eletroquímico. Isso ocorre por meio de uma série de reações químicas no eletrólito que são acionadas pela energia elétrica que flui do circuito de carga.

Quando uma bateria está em uso, os íons de lítio fluem na direção oposta do ânodo para o cátodo através do eletrólito, enquanto os elétrons fluem através do circuito elétrico do dispositivo em que a bateria está instalada, fornecendo energia.

Ao longo dos anos, ajustes nos materiais usados no cátodo e no ânodo ajudaram a melhorar a capacidade e a densidade de energia das baterias de íons de lítio, mas as melhorias mais substanciais foram na queda do custo das baterias.

“Chegou a um ponto em que a química desenvolvida 35 anos atrás se estabilizou”, diz Mauro Pasta, professor-associado de materiais da Universidade de Oxford, no Reino Unido, e líder de projeto na The Faraday Institution, que está trabalhando na próxima fase das baterias de íon-lítio.

Seu objetivo é aumentar a densidade de energia das baterias de íon de lítio e, ao mesmo tempo, ampliar sua eficiência para que não percam energia com cargas e descargas repetidas.

Para fazer isso, o professor Pasta está focado em substituir o fluido eletrolítico altamente inflamável encontrado em baterias de íon-lítio modernas por um sólido feito de cerâmica. O uso de um sólido reduz o risco de combustão de eletrólitos no caso de uma célula curta ou instável, que estava por trás do recall de 2017 da Samsung de 2,5 milhões de Galaxy Note 7s após uma série de incêndios por problemas na bateria.

Isso é importante para a segurança do usuário e de seu entorno, pois até mesmo o eletrólito de gel de polímero encontrado na maioria de nossos eletrônicos portáteis ainda é inflamável.

Essa bateria de estado sólido também possibilita o uso de metal de lítio denso em vez do ânodo de grafite, o que aumenta significativamente a quantidade de energia que pode armazenar no processo. Neste sentido, pode ter implicações enormes no futuro dos automóveis.

No momento, todo veículo elétrico contém o equivalente a milhares de baterias de iPhone. Como os veículos elétricos parecem destinados a substituir aqueles movidos a combustíveis fósseis em muitos países nos próximos anos, a mudança para baterias de estado sólido significaria viagens mais longas e mais tempo entre as recargas.

Nossa sede por bateria só tende a crescer nos próximos anos, ao passo que cada vez mais meios de transporte se tornam elétricos e a variedade de parafernálias eletrônicas portáteis em nossas vidas só aumenta. Sendo assim, devemos procurar alternativas ao lítio que possam diminuir o impacto no meio ambiente?

A região do “Triângulo de Lítio” dos Andes – que inclui partes da Argentina, Bolívia e Chile – contém pouco mais da metade dos recursos naturais mundiais do metal. Mas extraí-lo requer água – muita água. Na região do Salar de Atacama, no Chile, cerca de 1 milhão de litros de água são usados no processo de mineração para produzir apenas 900 kg de lítio. O processo envolve a purificação dos sais ricos em metais dissolvendo-os progressivamente em água, filtrando e evaporando a salmoura até que o sal de lítio puro seja obtido. Órgãos ambientais administrados pelo governo chileno, no entanto, alertaram que a mineração de metais – principalmente de lítio e cobre – na região está usando mais água do que é substituída por neve e chuva.

Para contornar isso, pesquisadores do Instituto de Tecnologia de Karlsruhe estão trabalhando em baterias que usam diferentes metais no ânodo, como cálcio ou magnésio. O cálcio é o quinto elemento mais abundante na crosta terrestre e é improvável que sofra dos mesmos problemas de abastecimento que o lítio, mas as pesquisas para melhorar o desempenho das baterias que o utilizam ainda estão engatinhando. O magnésio também apresenta resultados iniciais promissores, principalmente em termos de densidade energética, e há planos de comercialização no futuro.

Mas há quem esteja buscando alternativas em materiais mais amplamente disponíveis, incluindo a madeira, por exemplo.

Liangbing Hu, diretor do Centro de Inovação de Materiais da Universidade de Maryland, nos Estados Unidos, construiu recentemente uma bateria usando pedaços de madeira porosos e furados como eletrodos, dentro dos quais íons metálicos reagem para gerar uma carga elétrica. A madeira é abundante, de baixo custo e leve, e apresenta alto potencial de desempenho em baterias. As baterias mais recentes foram produzidas após anos de pesquisa sobre a capacidade desse material de armazenar energia, incluindo o revestimento de fibras de celulose de madeira em estanho.

Como a madeira evoluiu naturalmente para ser permeável aos nutrientes conforme eles são transportados pela planta, o material faz eletrodos com a capacidade de armazenar íons de metal sem o risco de se espandir ou encolher perigosamente, como pode ocorrer com os eletrodos de bateria de íon de lítio.

Embora a equipe de Hu preveja que as baterias à base de madeira vão poder ser usadas em nossos eletrônicos portáteis, bem como no armazenamento de energia em grande escala em determinado momento, ainda não poderemos carregar nossos laptops com elas, pois ainda estão sendo testadas em laboratórios.

Essas baterias perdem a capacidade de armazenar uma carga relativamente rápida – um protótipo só conseguia manter 61% de sua capacidade inicial após 100 ciclos de recarga. No momento, a quantidade de madeira usada é de vários centímetros de largura e comprimento, e as baterias podem ser empilhadas ou conectadas para aplicações em larga escala, o que pode eventualmente ser útil para armazenar energia em casas ou outros edifícios.

O lítio não é o único metal encontrado na maioria das baterias modernas – a maioria também usa cobalto em combinação com lítio no cátodo. A mineração de cobalto gera um impacto tóxico que afeta a saúde das comunidades que vivem no entorno das minas e também o meio ambiente. A mineração de cobalto também é prejudicada pelo uso de trabalho infantil, especialmente na República Democrática do Congo, na África, país que abriga mais da metade das minas de cobalto do mundo. As principais empresas de tecnologia, incluindo Apple, Tesla e Microsoft, foram recentemente processadas por mortes na mineração de cobalto.

“Todo mundo está carregando uma bateria de íon de lítio extraída por crianças”, diz Jodie Lutkenhaus, engenheira química da Texas A&M University, nos Estados Unidos.

Isso a inspirou a desenvolver alternativas para essas “baterias de sangue” usando proteínas, as moléculas complexas criadas e usadas por organismos vivos. Os ânodos das baterias tendem a ser feitos de grafite e os cátodos são feitos de óxidos de metal que contêm elementos como o cobalto. Se eles puderem ser substituídos por materiais orgânicos para ambos os eletrodos ativos, isso significa que o cobalto não precisará mais ser extraído.

Isso não apenas descarta a necessidade de metais tóxicos que precisam ser extraídos do solo, mas também lança luz sobre outro legado ambiental das baterias de íon-lítio. Se eliminados após o uso em aterros sanitários, os metais e eletrólitos do íon de lítio podem vazar para o meio ambiente, causando mais danos. Atualmente, apenas cerca de 5% das baterias de íon-lítio usadas nos 1,5 bilhão de smartphones vendidos a cada ano são recicladas.

Desenvolvida em colaboração com sua colega Karen Wooley, na Texas A&M University, a bateria de proteína de Lutkenhaus é a primeira célula de energia do mundo que se degrada a partir de sua dissolução em um ácido, o que significa que pode ser facilmente quebrada e usada novamente.

Embora ela ainda não possa competir com o íon de lítio – só fornece até 1,5 V por cerca de 50 ciclos de recarga antes de perder potência – faz parte de uma série de iniciativas sobre como a sustentabilidade está sendo levada em conta para o design de novas baterias.

Super fruta

Em outro desdobramento, um grupo de pesquisadores não está apenas tentando encontrar novas maneiras de fornecer energia a nossos dispositivos, mas também lidar com o problema do desperdício de alimentos ao mesmo tempo.

Vincent Gomes, engenheiro químico da Universidade de Sydney, e sua equipe, incluindo Labna Shabnam, estão transformando os resíduos da fruta mais fedorenta do mundo, o durião, e da maior fruta do mundo, a jaca, em um supercapacitor que pode carregar telefones celulares, tablets e laptops em minutos.

Os supercapacitores são uma forma alternativa de armazenamento de energia. Eles agem como reservatórios, capazes de carregar rapidamente e, em seguida, descarregar energia em rajadas. Eles tendem a ser feitos de materiais caros como o grafeno, mas a equipe de Gomes transformou partes não comestíveis de durião e jaca em aerogéis de carbono – sólidos superleves porosos – com propriedades “excepcionais” de armazenamento natural de energia. Eles aqueceram, liofilizaram e depois assaram o núcleo esponjoso não comestível de cada fruta em um forno a temperaturas de mais de 1.500 °C. As estruturas pretas, altamente porosas e ultraleves que resultaram desse processo poderiam ser transformadas em eletrodos de um supercapacitor de baixo custo.

Os supercapacitores podem ser carregados em 30 segundos e usados para alimentar uma variedade de dispositivos.

“Ser capaz de carregar um telefone celular em um minuto é incrível”, diz Shabnam.

O sonho dos pesquisadores é usar esses supercapacitores sustentáveis para armazenar eletricidade de fontes renováveis de energia para uso em veículos e residências.

E isso antes de considerar os benefícios de encontrar um uso verde para o durião, já que mais de 70% dessas frutas tendem a ser jogadas fora.

Em 2018, o mau cheiro impediu temporariamente a decolagem de um avião na Indonésia. Também levou a uma evacuação em massa de uma biblioteca da Universidade de Canberra, na Austrália, no ano passado.

Nos estágios iniciais de sua pesquisa, o fedor se tornou um desafio para a mulher de Gomes, que retirou todos os restos da fruta fedorenta do freezer depois de apenas uma noite.

fonte https://www.bbc.com/portuguese

O que achou?

comentários

Anterior

Próxima

Enviar Comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Share This
News Como a fruta mais fedida do mundo gerar energia para seu telefone